extension | φ:Q→Out N | d | ρ | Label | ID |
(D5xC2xC6).1C22 = Dic3.D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).1C2^2 | 480,429 |
(D5xC2xC6).2C22 = D30.34D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).2C2^2 | 480,430 |
(D5xC2xC6).3C22 = D30.D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).3C2^2 | 480,432 |
(D5xC2xC6).4C22 = (C2xC12).D10 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).4C2^2 | 480,437 |
(D5xC2xC6).5C22 = (C2xC60).C22 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).5C2^2 | 480,438 |
(D5xC2xC6).6C22 = (C4xDic3):D5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).6C2^2 | 480,439 |
(D5xC2xC6).7C22 = C60.44D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).7C2^2 | 480,440 |
(D5xC2xC6).8C22 = (C4xDic15):C2 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).8C2^2 | 480,442 |
(D5xC2xC6).9C22 = C60.88D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).9C2^2 | 480,444 |
(D5xC2xC6).10C22 = (D5xDic3):C4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).10C2^2 | 480,469 |
(D5xC2xC6).11C22 = D10.19(C4xS3) | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).11C2^2 | 480,470 |
(D5xC2xC6).12C22 = Dic3:4D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).12C2^2 | 480,471 |
(D5xC2xC6).13C22 = Dic15:13D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).13C2^2 | 480,472 |
(D5xC2xC6).14C22 = (C6xD5).D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).14C2^2 | 480,483 |
(D5xC2xC6).15C22 = Dic15:D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).15C2^2 | 480,484 |
(D5xC2xC6).16C22 = Dic3:D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).16C2^2 | 480,485 |
(D5xC2xC6).17C22 = D10.16D12 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).17C2^2 | 480,489 |
(D5xC2xC6).18C22 = D10.17D12 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).18C2^2 | 480,490 |
(D5xC2xC6).19C22 = D10:1Dic6 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).19C2^2 | 480,497 |
(D5xC2xC6).20C22 = D10:2Dic6 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).20C2^2 | 480,498 |
(D5xC2xC6).21C22 = Dic3xD20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).21C2^2 | 480,501 |
(D5xC2xC6).22C22 = Dic15.D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).22C2^2 | 480,506 |
(D5xC2xC6).23C22 = D10:4Dic6 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).23C2^2 | 480,507 |
(D5xC2xC6).24C22 = D20:8Dic3 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).24C2^2 | 480,510 |
(D5xC2xC6).25C22 = C15:17(C4xD4) | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).25C2^2 | 480,517 |
(D5xC2xC6).26C22 = Dic15:9D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).26C2^2 | 480,518 |
(D5xC2xC6).27C22 = D10:C4:S3 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).27C2^2 | 480,528 |
(D5xC2xC6).28C22 = Dic15:2D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).28C2^2 | 480,529 |
(D5xC2xC6).29C22 = D6:D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).29C2^2 | 480,530 |
(D5xC2xC6).30C22 = (C2xDic6):D5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).30C2^2 | 480,531 |
(D5xC2xC6).31C22 = C60:4D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).31C2^2 | 480,532 |
(D5xC2xC6).32C22 = D6.9D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).32C2^2 | 480,533 |
(D5xC2xC6).33C22 = C12:D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).33C2^2 | 480,534 |
(D5xC2xC6).34C22 = D30:2D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).34C2^2 | 480,535 |
(D5xC2xC6).35C22 = D30:12D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).35C2^2 | 480,537 |
(D5xC2xC6).36C22 = Dic15.10D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).36C2^2 | 480,538 |
(D5xC2xC6).37C22 = C60:10D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).37C2^2 | 480,539 |
(D5xC2xC6).38C22 = Dic15.31D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).38C2^2 | 480,540 |
(D5xC2xC6).39C22 = C12:2D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).39C2^2 | 480,541 |
(D5xC2xC6).40C22 = S3xD10:C4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).40C2^2 | 480,548 |
(D5xC2xC6).41C22 = D30.27D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).41C2^2 | 480,549 |
(D5xC2xC6).42C22 = D30:4D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).42C2^2 | 480,551 |
(D5xC2xC6).43C22 = D30:5D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).43C2^2 | 480,552 |
(D5xC2xC6).44C22 = D30:6D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).44C2^2 | 480,609 |
(D5xC2xC6).45C22 = C6.(D4xD5) | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).45C2^2 | 480,610 |
(D5xC2xC6).46C22 = (C2xC30).D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).46C2^2 | 480,612 |
(D5xC2xC6).47C22 = C6.(C2xD20) | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).47C2^2 | 480,613 |
(D5xC2xC6).48C22 = C23.17(S3xD5) | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).48C2^2 | 480,624 |
(D5xC2xC6).49C22 = (C6xD5):D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).49C2^2 | 480,625 |
(D5xC2xC6).50C22 = Dic15:3D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).50C2^2 | 480,626 |
(D5xC2xC6).51C22 = Dic3xC5:D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).51C2^2 | 480,629 |
(D5xC2xC6).52C22 = Dic15:16D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).52C2^2 | 480,635 |
(D5xC2xC6).53C22 = (S3xC10):D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).53C2^2 | 480,641 |
(D5xC2xC6).54C22 = Dic15:5D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).54C2^2 | 480,643 |
(D5xC2xC6).55C22 = (C2xC6):D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).55C2^2 | 480,645 |
(D5xC2xC6).56C22 = Dic15:18D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).56C2^2 | 480,647 |
(D5xC2xC6).57C22 = D30:8D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).57C2^2 | 480,653 |
(D5xC2xC6).58C22 = C2xD20:5S3 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).58C2^2 | 480,1074 |
(D5xC2xC6).59C22 = C2xD20:S3 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).59C2^2 | 480,1075 |
(D5xC2xC6).60C22 = D5xD4:2S3 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | 8- | (D5xC2xC6).60C2^2 | 480,1098 |
(D5xC2xC6).61C22 = C2xDic5.D6 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).61C2^2 | 480,1113 |
(D5xC2xC6).62C22 = C2xC30.C23 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).62C2^2 | 480,1114 |
(D5xC2xC6).63C22 = D10.20D12 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).63C2^2 | 480,243 |
(D5xC2xC6).64C22 = D10.D12 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | 8- | (D5xC2xC6).64C2^2 | 480,248 |
(D5xC2xC6).65C22 = D10.4D12 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | 8+ | (D5xC2xC6).65C2^2 | 480,249 |
(D5xC2xC6).66C22 = C2xDic3xF5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).66C2^2 | 480,998 |
(D5xC2xC6).67C22 = C22:F5.S3 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | 8- | (D5xC2xC6).67C2^2 | 480,999 |
(D5xC2xC6).68C22 = C2xD6:F5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).68C2^2 | 480,1000 |
(D5xC2xC6).69C22 = C2xDic3:F5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).69C2^2 | 480,1001 |
(D5xC2xC6).70C22 = F5xC3:D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 60 | 8 | (D5xC2xC6).70C2^2 | 480,1010 |
(D5xC2xC6).71C22 = S3xC22:F5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 60 | 8+ | (D5xC2xC6).71C2^2 | 480,1011 |
(D5xC2xC6).72C22 = C3:D4:F5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 60 | 8 | (D5xC2xC6).72C2^2 | 480,1012 |
(D5xC2xC6).73C22 = C22xS3xF5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 60 | | (D5xC2xC6).73C2^2 | 480,1197 |
(D5xC2xC6).74C22 = C3xC20:4D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).74C2^2 | 480,667 |
(D5xC2xC6).75C22 = C3xC4.D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).75C2^2 | 480,668 |
(D5xC2xC6).76C22 = C3xC42:2D5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).76C2^2 | 480,669 |
(D5xC2xC6).77C22 = C3xD10:D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).77C2^2 | 480,677 |
(D5xC2xC6).78C22 = C3xDic5.5D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).78C2^2 | 480,678 |
(D5xC2xC6).79C22 = C3xC22.D20 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).79C2^2 | 480,679 |
(D5xC2xC6).80C22 = C3xC4:C4:D5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).80C2^2 | 480,691 |
(D5xC2xC6).81C22 = C3xC23.23D10 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).81C2^2 | 480,722 |
(D5xC2xC6).82C22 = C3xC20:7D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).82C2^2 | 480,723 |
(D5xC2xC6).83C22 = C3xDic5:D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).83C2^2 | 480,732 |
(D5xC2xC6).84C22 = C3xC20:D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).84C2^2 | 480,733 |
(D5xC2xC6).85C22 = C3xC20.23D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).85C2^2 | 480,740 |
(D5xC2xC6).86C22 = (C2xC60):C4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | 4 | (D5xC2xC6).86C2^2 | 480,304 |
(D5xC2xC6).87C22 = C3:(C23:F5) | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | 4 | (D5xC2xC6).87C2^2 | 480,316 |
(D5xC2xC6).88C22 = D4xC3:F5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 60 | 8 | (D5xC2xC6).88C2^2 | 480,1067 |
(D5xC2xC6).89C22 = C3xD10.D4 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | 4 | (D5xC2xC6).89C2^2 | 480,279 |
(D5xC2xC6).90C22 = C3xC23:F5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 120 | 4 | (D5xC2xC6).90C2^2 | 480,291 |
(D5xC2xC6).91C22 = C3xD4xF5 | φ: C22/C1 → C22 ⊆ Out D5xC2xC6 | 60 | 8 | (D5xC2xC6).91C2^2 | 480,1054 |
(D5xC2xC6).92C22 = Dic3:C4:D5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).92C2^2 | 480,424 |
(D5xC2xC6).93C22 = D10:Dic6 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).93C2^2 | 480,425 |
(D5xC2xC6).94C22 = (D5xC12):C4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).94C2^2 | 480,433 |
(D5xC2xC6).95C22 = (C4xD5):Dic3 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).95C2^2 | 480,434 |
(D5xC2xC6).96C22 = C60.67D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).96C2^2 | 480,435 |
(D5xC2xC6).97C22 = C60.68D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).97C2^2 | 480,436 |
(D5xC2xC6).98C22 = C4xD5xDic3 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).98C2^2 | 480,467 |
(D5xC2xC6).99C22 = D5xDic3:C4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).99C2^2 | 480,468 |
(D5xC2xC6).100C22 = D5xC4:Dic3 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).100C2^2 | 480,488 |
(D5xC2xC6).101C22 = C4xC15:D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).101C2^2 | 480,515 |
(D5xC2xC6).102C22 = D6:(C4xD5) | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).102C2^2 | 480,516 |
(D5xC2xC6).103C22 = C4xC3:D20 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).103C2^2 | 480,519 |
(D5xC2xC6).104C22 = C15:20(C4xD4) | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).104C2^2 | 480,520 |
(D5xC2xC6).105C22 = D6:C4:D5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).105C2^2 | 480,523 |
(D5xC2xC6).106C22 = D10:D12 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).106C2^2 | 480,524 |
(D5xC2xC6).107C22 = C60:D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).107C2^2 | 480,525 |
(D5xC2xC6).108C22 = C12:7D20 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).108C2^2 | 480,526 |
(D5xC2xC6).109C22 = D5xD6:C4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).109C2^2 | 480,547 |
(D5xC2xC6).110C22 = C2xD10:Dic3 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).110C2^2 | 480,611 |
(D5xC2xC6).111C22 = D5xC6.D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).111C2^2 | 480,623 |
(D5xC2xC6).112C22 = (C2xC30):D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).112C2^2 | 480,639 |
(D5xC2xC6).113C22 = (C2xC6):8D20 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).113C2^2 | 480,640 |
(D5xC2xC6).114C22 = C2xD5xDic6 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).114C2^2 | 480,1073 |
(D5xC2xC6).115C22 = C2xD6.D10 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).115C2^2 | 480,1083 |
(D5xC2xC6).116C22 = C2xD12:5D5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).116C2^2 | 480,1084 |
(D5xC2xC6).117C22 = C2xC12.28D10 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).117C2^2 | 480,1085 |
(D5xC2xC6).118C22 = S3xC2xC4xD5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).118C2^2 | 480,1086 |
(D5xC2xC6).119C22 = C2xD5xD12 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).119C2^2 | 480,1087 |
(D5xC2xC6).120C22 = D5xC4oD12 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | 4 | (D5xC2xC6).120C2^2 | 480,1090 |
(D5xC2xC6).121C22 = C22xD5xDic3 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).121C2^2 | 480,1112 |
(D5xC2xC6).122C22 = C3xC42:D5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).122C2^2 | 480,665 |
(D5xC2xC6).123C22 = C12xD20 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).123C2^2 | 480,666 |
(D5xC2xC6).124C22 = C3xD5xC22:C4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).124C2^2 | 480,673 |
(D5xC2xC6).125C22 = C3xDic5:4D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).125C2^2 | 480,674 |
(D5xC2xC6).126C22 = C3xD10.12D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).126C2^2 | 480,676 |
(D5xC2xC6).127C22 = C3xC4:C4:7D5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).127C2^2 | 480,685 |
(D5xC2xC6).128C22 = C3xD20:8C4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).128C2^2 | 480,686 |
(D5xC2xC6).129C22 = C3xD10.13D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).129C2^2 | 480,687 |
(D5xC2xC6).130C22 = C3xC4:D20 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).130C2^2 | 480,688 |
(D5xC2xC6).131C22 = C3xD10:Q8 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).131C2^2 | 480,689 |
(D5xC2xC6).132C22 = C3xD10:2Q8 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).132C2^2 | 480,690 |
(D5xC2xC6).133C22 = C6xD10:C4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).133C2^2 | 480,720 |
(D5xC2xC6).134C22 = C12xC5:D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).134C2^2 | 480,721 |
(D5xC2xC6).135C22 = C3xC23:D10 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).135C2^2 | 480,730 |
(D5xC2xC6).136C22 = C3xC20:2D4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).136C2^2 | 480,731 |
(D5xC2xC6).137C22 = C3xD10:3Q8 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).137C2^2 | 480,739 |
(D5xC2xC6).138C22 = C6xC4oD20 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).138C2^2 | 480,1138 |
(D5xC2xC6).139C22 = C6xD4:2D5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).139C2^2 | 480,1140 |
(D5xC2xC6).140C22 = C6xQ8:2D5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 240 | | (D5xC2xC6).140C2^2 | 480,1143 |
(D5xC2xC6).141C22 = C3xD5xC4oD4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | 4 | (D5xC2xC6).141C2^2 | 480,1145 |
(D5xC2xC6).142C22 = D10.10D12 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).142C2^2 | 480,311 |
(D5xC2xC6).143C22 = C2xC4xC3:F5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).143C2^2 | 480,1063 |
(D5xC2xC6).144C22 = C2xC60:C4 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).144C2^2 | 480,1064 |
(D5xC2xC6).145C22 = (C2xC12):6F5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | 4 | (D5xC2xC6).145C2^2 | 480,1065 |
(D5xC2xC6).146C22 = C2xD10.D6 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).146C2^2 | 480,1072 |
(D5xC2xC6).147C22 = C23xC3:F5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).147C2^2 | 480,1206 |
(D5xC2xC6).148C22 = C3xD10.3Q8 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).148C2^2 | 480,286 |
(D5xC2xC6).149C22 = F5xC2xC12 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).149C2^2 | 480,1050 |
(D5xC2xC6).150C22 = C6xC4:F5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).150C2^2 | 480,1051 |
(D5xC2xC6).151C22 = C3xD10.C23 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | 4 | (D5xC2xC6).151C2^2 | 480,1052 |
(D5xC2xC6).152C22 = C6xC22:F5 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).152C2^2 | 480,1059 |
(D5xC2xC6).153C22 = F5xC22xC6 | φ: C22/C2 → C2 ⊆ Out D5xC2xC6 | 120 | | (D5xC2xC6).153C2^2 | 480,1205 |
(D5xC2xC6).154C22 = D5xC4xC12 | φ: trivial image | 240 | | (D5xC2xC6).154C2^2 | 480,664 |
(D5xC2xC6).155C22 = C3xD5xC4:C4 | φ: trivial image | 240 | | (D5xC2xC6).155C2^2 | 480,684 |
(D5xC2xC6).156C22 = D5xC22xC12 | φ: trivial image | 240 | | (D5xC2xC6).156C2^2 | 480,1136 |
(D5xC2xC6).157C22 = C6xQ8xD5 | φ: trivial image | 240 | | (D5xC2xC6).157C2^2 | 480,1142 |